SAICE

ASCE Standard ASCE/SEI 41-06 Seismic Rehabilitation of Existing Buildings

R1210,52 Incl. VAT

Product Code: TD/ASC/ASCSR
ASCE/SEI Standard 41-06, Seismic Rehabilitation of Existing Buildings, the latest generation of performance-based seismic rehabilitation methodology.

Additional information

Weight 1000 g
Author

ASCE

Publisher

ASCE

ISBN Number

9780784408841

CONTENTS

Standards iii

Foreword v

Acknowledgments vi

1.0 REHABILITATION REQUIREMENTS 1

1.1 SCOPE 1

1.2 DESIGN BASIS 3

1.3 SEISMIC REHABILITATION PROCESS 4

1.3.1 Initial Considerations 6

1.3.2 Selection of Rehabilitation Objective 6

1.3.3 As-Built Information 7

1.3.4 Rehabilitation Method 7

1.3.5 Rehabilitation Measures 7

1.3.6 Verification of Rehabilitation Design 7

1.4 REHABILITATION OBJECTIVES 7

1.4.1 Basic Safety Objective 8

1.4.2 Enhanced Rehabilitation Objectives 8

1.4.3 Limited Rehabilitation Objectives 9

1.5 TARGET BUILDING PERFORMANCE LEVELS 9

1.5.1 Structural Performance Levels and Ranges 11

1.5.2 Nonstructural Performance Levels 15

1.5.3 Designation of Target Building Performance Levels 19

1.6 SEISMIC HAZARD 21

1.6.1 General Procedure for Hazard Due to Ground Shaking 22

1.6.2 Site-Specific Procedure for Hazard Due to Ground Shaking 27

1.6.3 Level of Seismicity 28

2.0 SCOPE 28

2.1 SCOPE 28

2.2 AS-BUILT INFORMATION 29

2.2.1 Building Configuration 29

2.2.2 Component Properties 30

2.2.3 Site and Foundation Information 30

2.2.4 Adjacent Buildings 30

2.2.5 Primary and Secondary Components 31

2.2.6 Data Collection Requirements 31

2.3 REHABILITATION METHODS 33

2.3.1 Simplified Rehabilitation Method 33

2.3.2 Systematic Rehabilitation Method 33

2.4 ANALYSIS PROCEDURES 34

2.4.1 Linear Procedures 35

2.4.2 Nonlinear Procedures 37

2.4.3 Alternative Rational Analysis 38

2.4.4 Acceptance Criteria 38

2.5 REHABILITATION STRATEGIES 42

2.6 GENERAL DESIGN REQUIREMENTS 44

2.6.1 Multidirectional Seismic Effects 44

2.6.2 P-A Effects 44

2.6.3 Horizontal Torsion 44

2.6.4 Overturning 44

2.6.5 Continuity 45

2.6.6 Diaphragms 45

2.6.7 Walls 46

2.6.8 Nonstructural Components 47

2.6.9 Structures Sharing Common Elements 47

2.6.10 Building Separation 47

2.6.11 Vertical Seismic Effects 48

2.7 CONSTRUCTION QUALITY ASSURANCE 48

2.7.1 Construction Quality Assurance Plan 48

2.7.2 Construction Quality Assurance Requirements 49

2.7.3 Responsibilities of the Authority Having Jurisdiction 49

2.8 ALTERNATIVE MODELING PARAMETERS AND ACCEPTANCE CRITERIA 50

2.8.1 Experimental Setup 50

2.8.2 Data Reduction and Reporting 50

2.8.3 Design Parameters and Acceptance Criteria 51

3.0 ANALYSIS PROCEDURES 53

3.1 SCOPE 53

3.2 GENERAL ANALYSIS REQUIREMENTS 54

3.2.1 Analysis Procedure Selection 54

3.2.2 Mathematical Modeling 54

3.2.3 Configuration 57

3.2.4 Diaphragms 57

3.2.5 P-A Effects 58

3.2.6 Soil-Structure Interaction 58

3.2.7 Multidirectional Seismic Effects 59

3.2.8 Component Gravity Loads for Load Combinations 59

3.2.9 Verification of Design Assumptions 59

3.2.10 Overturning 60

3.3 ANALYSIS PROCEDURES 61

3.3.1 Linear Static Procedure 61

3.3.2 Linear Dynamic Procedure 66

3.3.3 Nonlinear Static Procedure 67

3.3.4 Nonlinear Dynamic Procedure 72

3.4 ACCEPTANCE CRITERIA 73

3.4.1 General Requirements 73

3.4.2 Linear Procedures 73

3.4.3 Nonlinear Procedures 75

4.0 FOUNDATIONS AND GEOLOGIC SITE HAZARDS 75

4.1 SCOPE 75

4.2 SITE CHARACTERIZATION 76

4.2.1 Foundation Information 76

4.2.2 Seismic Geologic Site Hazards 77

4.3 MITIGATION OF SEISMIC-GEOLOGIC SITE HAZARDS 81

4.4 FOUNDATION STRENGTH AND STIFFNESS 83

4.4.1 Expected Capacities of Foundations 83

4.4.2 Load-Deformation Characteristics for Foundations 86

4.4.3 Foundation Acceptance Criteria 95

4.5 KINEMATIC INTERACTION AND FOUNDATION DAMPING SOIL-STRUCTURE INTERACTION EFFECTS 96

4.5.1 Kinematic Interaction 97

4.5.2 Foundation Damping Soil-Structure Interaction Effects 98

4.6 SEISMIC EARTH PRESSURE 99

4.7 FOUNDATION REHABILITATION 100

5.0 STEEL 101

5.1 SCOPE 101

5.2 MATERIAL PROPERTIES AND CONDITION ASSESSMENT 101

5.2.1 General 101

5.2.2 Properties of In-Place Materials and Components 102

5.2.3 Condition Assessment 105

5.3 GENERAL ASSUMPTIONS AND REQUIREMENTS 108

5.3.1 Stiffness 108

5.3.2 Design Strengths and Acceptance Criteria 108

5.3.3 Rehabilitation Measures 109

5.4 STEEL MOMENT FRAMES 109

5.4.1 General 109

5.4.2 Fully Restrained Moment Frames 114

5.4.3 Partially Restrained Moment Frames 126

5.5 STEEL BRACED FRAMES 131

5.5.1 General 131

5.5.2 Concentric Braced Frames 131

5.5.3 Eccentric Braced Frames 133

5.6 STEEL PLATE SHEAR WALLS 135

5.6.1 General 135

5.6.2 Stiffness 135

5.6.3 Strength 135

5.6.4 Acceptance Criteria 136

5.6.5 Rehabilitation Measures 136

5.7 STEEL FRAMES WITH INFILLS 136

5.8 DIAPHRAGMS 137

5.8.1 Bare Metal Deck Diaphragms 137

5.8.2 Metal Deck Diaphragms with Structural Concrete Topping 138

5.8.3 Metal Deck Diaphragms with Nonstructural Topping 140

5.8.4 Horizontal Steel Bracing (Steel Truss Diaphragms) 141

5.8.5 Archaic Diaphragms 142

5.8.6 Chord and Collector Elements 143

5.9 STEEL PILE FOUNDATIONS 144

5.9.1 General 144

5.9.2 Stiffness 144

5.9.3 Strength 144

5.9.4 Acceptance Criteria 144

5.9.5 Rehabilitation Measures 144

5.10 CAST AND WROUGHT IRON 145

5.10.1 General 145

5.10.2 Stiffness 145

5.10.3 Strength and Acceptance Criteria 145

6.0 CONCRETE 145

6.1 SCOPE 145

6.2 MATERIAL PROPERTIES AND CONDITION ASSESSMENT 145

6.2.1 General 145

6.2.2 Properties of In-Place Materials and Components 146

6.2.3 Condition Assessment 151

6.2.4 Knowledge Factor 153

6.3 GENERAL ASSUMPTIONS AND REQUIREMENTS 153

6.3.1 Modeling and Design 153

6.3.2 Strength and Deformability 155

6.3.3 Flexure and Axial Loads 156

6.3.4 Shear and Torsion 157

6.3.5 Development and Splices of Reinforcement 157

6.3.6 Connections to Existing Concrete 158

6.3.7 Rehabilitation 159

6.4 CONCRETE MOMENT FRAMES 159

6.4.1 Types of Concrete Moment Frames 159

6.4.2 Reinforced Concrete Beam-Column Moment Frames 160

6.4.3 Post-Tensioned Concrete Beam-Column Moment Frames 168

6.4.4 Slab-Column Moment Frames 169

6.5 PRECAST CONCRETE FRAMES 173

6.5.1 Types of Precast Concrete Frames 173

6.5.2 Precast Concrete Frames Expected to Resist Lateral Load 173

6.5.3 Precast Concrete Frames Not Expected to Resist Lateral

Loads Directly 174

6.6 CONCRETE FRAMES WITH INFILLS 175

6.6.1 Types of Concrete Frames with Infills 175

6.6.2 Concrete Frames with Masonry Infills 175

6.6.3 Concrete Frames with Concrete Infills 178

6.7 CONCRETE SHEAR WALLS 180

6.7.1 Types of Concrete Shear Walls and Associated Components 180

6.7.2 Reinforced Concrete Shear Walls, Wall Segments, Coupling Beams, and Reinforced Concrete Columns Supporting Discontinuous Shear Walls 183

6.8 PRECAST CONCRETE SHEAR WALLS 189

6.8.1 Types of Precast Shear Walls 189

6.8.2 Precast Concrete Shear Walls and Wall Segments 190

6.9 CONCRETE-BRACED FRAMES 193

6.9.1 Types of Concrete-Braced Frames 193

6.9.2 General Considerations 193

6.9.3 Stiffness 193

6.9.4 Strength 194

6.9.5 Acceptance Criteria 194

6.9.6 Rehabilitation Measures 194

6.10 CAST-IN-PLACE CONCRETE DIAPHRAGMS 194

6.10.1 Components of Concrete Diaphragms 194

6.10.2 Analysis, Modeling, and Acceptance Criteria 195

6.10.3 Rehabilitation Measures 195

6.11 PRECAST CONCRETE DIAPHRAGMS 196

6.11.1 Components of Precast Concrete Diaphragms 196

6.11.2 Analysis, Modeling, and Acceptance Criteria 196

6.11.3 Rehabilitation Measures 196

6.12 CONCRETE FOUNDATION COMPONENTS 197

6.12.1 Types of Concrete Foundations 197

6.12.2 Analysis of Existing Foundations 197

6.12.3 Evaluation of Existing Condition 198

6.12.4 Rehabilitation Measures 198

7.0 MASONRY 199

7.1 SCOPE 199

7.2 MATERIAL PROPERTIES AND CONDITION ASSESSMENT 199

7.2.1 General 199

7.2.2 Properties of In-Place Materials 200

7.2.3 Condition Assessment 204

7.2.4 Knowledge Factor 207

7.3 MASONRY WALLS 207

7.3.1 Types of Masonry Walls 208

7.3.2 Unreinforced Masonry Walls and Wall Piers In-Plane 211

7.3.3 Unreinforced Masonry Walls Out-of-Plane 213

7.3.4 Reinforced Masonry Walls and Wall Piers In-Plane 214

7.3.5 Reinforced Masonry Walls Out-of-Plane 216

7.4 MASONRY INFILLS 218

7.4.1 Types of Masonry Infills 218

7.4.2 Masonry Infills In-Plane 219

7.4.3 Masonry Infills Out-of-Plane 222

7.5 ANCHORAGE TO MASONRY WALLS 224

7.5.1 Types of Anchors 224

7.5.2 Analysis of Anchors 224

7.6 MASONRY FOUNDATION ELEMENTS 225

7.6.1 Types of Masonry Foundations 225

7.6.2 Analysis of Existing Foundations 225

7.6.3 Rehabilitation Measures 225

8.0 WOOD AND LIGHT METAL FRAMING 225

8.1 SCOPE 225

8.2 MATERIAL PROPERTIES AND CONDITION ASSESSMENT 226

8.2.1 General 226

8.2.2 Properties of In-Place Materials and Components 237

8.2.3 Condition Assessment 232

8.2.4 Knowledge Factor 234

8.3 GENERAL ASSUMPTIONS AND REQUIREMENTS 234

8.3.1 Stiffness 234

8.3.2 Strength and Acceptance Criteria 234

8.3.3 Connection Requirements 235

8.3.4 Rehabilitation Measures 235

8.3.5 Components Supporting Discontinuous Shear Walls 236

8.4 WOOD AND LIGHT FRAME SHEAR WALLS 236

8.4.1 General 236

8.4.2 Types of Wood Frame Shear Walls 237

8.4.3 Types of Light Gage Metal Frame Shear Walls 240

8.4.4 Single-Layer Horizontal Lumber Sheathing or Siding Shear Walls 240

8.4.5 Diagonal Lumber Sheathing Shear Walls 241

8.4.6 Vertical Wood Siding Shear Walls 243

8.4.7 Wood Siding over Horizontal Sheathing Shear Walls 246

8.4.8 Wood Siding over Diagonal Sheathing 246

8.4.9 Wood Structural Panel Sheathing 246

8.4.10 Stucco on Studs, Sheathing, or Fiberboard 247

8.4.11 Gypsum Plaster on Wood Lath 248

8.4.12 Gypsum Plaster on Gypsum Lath 248

8.4.13 Gypsum Wallboard 249

8.4.14 Gypsum Sheathing 249

8.4.15 Plaster on Metal Lath 249

8.4.16 Horizontal Lumber Sheathing with Cut-In Braces or Diagonal Blocking 250

8.4.17 Fiberboard or Particleboard Sheathing 250

8.4.18 Light Gage Metal Frame Shear Walls 251

8.5 WOOD DIAPHRAGMS 251

8.5.1 General 251

8.5.2 Types of Wood Diaphragms 251

8.5.3 Single Straight Sheathing 254

8.5.4 Double Straight Sheathing 255

8.5.5 Single Diagonal Sheathing 255

8.5.6 Diagonal Sheathing with Straight Sheathing or Flooring Above 256

8.5.7 Double Diagonal Sheathing 256

8.5.8 Wood Structural Panel Sheathing 257

8.5.9 Wood Structural Panel Overlays on Straight or Diagonal Sheathing 258

8.5.10 Wood Structural Panel Overlays on Existing Wood Structural Panel Sheathing 259

8.5.11 Braced Horizontal Diaphragms 259

8.6 WOOD FOUNDATIONS 259

8.6.1 Types of Wood Foundations 259

8.6.2 Analysis, Strength, and Acceptance Criteria of Wood Foundations 259

8.6.3 Rehabilitation Measures 260

8.7 OTHER WOOD ELEMENTS AND COMPONENTS 260

8.7.1 General 260

9.0 SEISMIC ISOLATION AND ENERGY DISSIPATION 261

9.1 SCOPE 261

9.2 SEISMIC ISOLATION SYSTEMS 263

9.2.1 General Requirements 263

9.2.2 Mechanical Properties and Modeling of Seismic Isolation Systems 263

9.2.3 General Criteria for Seismic Isolation Design 271

9.2.4 Linear Procedures 273

9.2.5 Nonlinear Procedures 274

9.2.6 Nonstructural Components 275

9.2.7 Detailed System Requirements 275

9.2.8 Design Review 277

9.2.9 Isolation System Testing and Design Properties 277

9.3 PASSIVE ENERGY DISSIPATION SYSTEMS 279

9.3.1 General Requirements 279

9.3.2 Implementation of Energy Dissipation Devices 280

9.3.3 Modeling of Energy Dissipation Devices 281

9.3.4 Linear Procedures 282

9.3.5 Nonlinear Procedures 285

9.3.6 Detailed Systems Requirements 286

9.3.7 Design Review 287

9.3.8 Required Tests of Energy Dissipation Devices 287

9.4 OTHER RESPONSE CONTROL SYSTEMS 289

10.0 SIMPLIFIED REHABILITATION 290

10.1 SCOPE 290

10.2 PROCEDURE 290

10.2.1 Procedure for Reduced Rehabilitation 290

10.2.2 Procedure for Partial Rehabilitation 294

10.3 CORRECTION OF DEFICIENCIES 297

11.0 ARCHITECTURAL, MECHANICAL, AND ELECTRICAL COMPONENTS 313

11.1 SCOPE 313

11.2 PROCEDURE 314

11.2.1 Condition Assessment 314

11.2.2 Sample Size 315

11.3 HISTORICAL AND COMPONENT EVALUATION CONSIDERATIONS 315

11.3.1 Historical Information 315

11.3.2 Component Evaluation 320

11.4 REHABILITATION 321

11.5 STRUCTURAL-NONSTRUCTURAL INTERACTION 322

11.5.1 Response Modification 322

11.5.2 Base Isolation 322

11.6 CLASSIFICATION OF ACCELERATION-SENSITIVE AND DEFORMATION-SENSITIVE COMPONENTS 322

11.7 EVALUATION PROCEDURES 323

11.7.1 Analytical Procedure 323

11.7.2 Prescriptive Procedure 324

11.7.3 Force Analysis: Default Equations 324

11.7.4 Force Analysis: General Equations 324

11.7.5 Deformation Analysis 328

11.7.6 Other Procedures 329

11.8 REHABILITATION APPROACHES 329

11.9 ARCHITECTURAL COMPONENTS: DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA 331

11.9.1 Exterior Wall Components 331

11.9.2 Partitions 335

11.9.3 Interior Veneers 336

11.9.4 Ceilings 337

11.9.5 Parapets and Appendages 338

11.9.6 Canopies and Marquees ; 339

11.9.7 Chimneys and Stacks 339

11.9.8 Stairs and Stair Enclosures 340

11.10 MECHANICAL, ELECTRICAL, AND PLUMBING COMPONENTS: DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA 340

11.10.1 Mechanical Equipment 340

11.10.2 Storage Vessels and Water Heaters 342

11.10.3 Pressure Piping 343

11.10.4 Fire Suppression Piping 343

11.10.5 Fluid Piping other than Fire Suppression 344

11.10.6 Ductwork 345

11.10.7 Electrical and Communications Equipment 346

11.10.8 Electrical and Communications Distribution Components 347

11.10.9 Light Fixtures 347

11.11 FURNISHINGS AND INTERIOR EQUIPMENT, DEFINITION, BEHAVIOR, AND ACCEPTANCE CRITERIA 348

11.11.1 Storage Racks 348

11.11.2 Bookcases 348

11.11.3 Computer Access Floors 349

11.11.4 Hazardous Materials Storage 349

11.11.5 Computer and Communication Racks 350

11.11.6 Elevators 351

11.11.7 Conveyors 351

Appendix

APPENDIX A 352

SYMBOLS 356

ACRONYMS 367

DEFINITIONS 368

REFERENCES 376

COMMENTARY REFERENCES 377

INDEX 387